

PAGOTA .		
RS-485 💌		
линия .		
	BOUD	
С2000-КДЛ-2И		

Контроллер двухпроводной линии связи «С2000-КДЛ-2И» Инструкция по монтажу АШЛР.426469.037 ИМ

Настоящая инструкция по монтажу содержит указания, позволяющие выполнить основные действия по установке и подготовке контроллера «С2000-КДЛ-2И» к работе. Описание контроллера и правила его настройки и эксплуатации смотрите в Руководстве по эксплуатации.

1 МЕРЫ ПРЕДОСТОРОЖНОСТИ

- Контроллер не имеет цепей, находящихся под опасным напряжением.
- Конструкция контроллера удовлетворяет требованиям электро- и пожарной безопасности по ГОСТ 12.2.007.0-75 и ГОСТ 12.1.004-91.
- Конструкция контроллера обеспечивает его пожарную безопасность в аварийном режиме работы и при нарушении правил эксплуатации согласно ГОСТ 12.1.004-91.
- Монтаж, установку и техническое обслуживание производить при отключённом напряжении питания контроллера.
- Монтаж и техническое обслуживание контроллера должны производиться лицами, имеющими квалификационную группу по электробезопасности не ниже второй.

2 МОНТАЖ КОНТРОЛЛЕРА

На представлен внешний вид, рис. 1 габаритные и установочные размеры контроллера. Контроллер устанавливается на стенах или других конструкциях помещения местах, защищённых от воздействия атмосферных осадков. в механических повреждений и от доступа посторонних лиц.

Монтаж соединительных линий производится в соответствии с рис. 4.

Рисунок 1. Габаритные и установочные размеры контроллера

Монтаж контроллера производится в соответствии с РД 78.145-92 «Правила производства и приёмки работ. Установки охранной, пожарной и охранно-пожарной сигнализации». Установка контроллера должна производиться на высоте, удобной для эксплуатации и обслуживания. Если контроллер устанавливается в неохраняемом помещении, рекомендуется располагать его на высоте не менее 2,2 м от пола.

3 ПОРЯДОК МОНТАЖА КОНТРОЛЛЕРА

3.1 Крепление на стену

3.1.1 Убедитесь, что стена, на которую устанавливается контроллер, прочная, ровная, чистая и сухая.

3.1.2 Закрепите контроллер на стене по варианту 1 или варианту 2.

3.1.3 Вариант 1. Приложите к стене шаблон для монтажа (стр. 8). Просверлите 3 отверстия (А, В и на выбор С или D).

3.1.4 Установите в отверстия дюбеля и вкрутите в 2 верхних дюбеля шурупы из комплекта поставки так, чтобы расстояние между головкой шурупа и стеной составляло около 7 мм.

3.1.5 Снимите крышку контроллера в порядке, указанном на рис. 2.

3.1.6 Навесьте контроллер на 2 шурупа. Вкрутите шуруп в нижнее крепёжное отверстие и зафиксируйте контроллер на стене.

3.1.7 **Вариант 2**. Приложите к стене шаблон для монтажа (стр. 8). Просверлите 3 отверстия (Е, F и на выбор С или D).

3.1.8 Установите в отверстия дюбеля.

3.1.9 Снимите крышку контроллера в порядке, указанном на рис. 2.

3.1.10 Вкрутите шурупы в крепежные отверстия и зафиксируйте контроллер на стене.

3.2 Крепление на DIN-рейку

3.2.1 Установите контроллер на DINрейку в порядке, указанном на рис. 3. 3.2.2 Снимите крышку контроллера в порядке, указанном на рис. 2.

Рисунок 2. Снятие крышки контроллера

Рисунок 3. Крепление контроллера на DIN-рейку

4 ПОДКЛЮЧЕНИЕ КОНТРОЛЛЕРА

4.1 Подключение линий интерфейса RS-485

4.1.1 Подключите линии A и B интерфейса RS-485 к контактам «А» и «В» клеммной колодки соответственно.

4.1.2 Объедините цепь «GND.RS» с «нулевым» проводом интерфейса RS-485.

4.1.3 Максимальное сечение проводов 1,5 мм².

4.1.4 Если контроллер не является последним в линии интерфейса RS-485, удалите перемычку, расположенную на плате контроллера (см. рис. 4).

ИП №1, №2 – источники питания постоянного тока с напряжением от 10,2 до 28,4 В

Рисунок 4. Схема внешних соединений контроллера

4.2 Подключение двухпроводной линии

4.2.1 Подсоедините кабели к контактам «ДПЛС-1», «ДПЛС-2» контроллера, соблюдая полярность: плюс двухпроводной линии подсоединить к контактам «+», минус – к контактам «-». Несоблюдение полярности приведёт к неработоспособности линии связи между контроллером и адресными устройствами.

4.2.2 В качестве двухпроводной линии связи рекомендуется использовать витую пару проводов.

4.3 Подключение источников питания

4.3.1 Подключите основной источник питания к контактам «+U1» и «GND».

4.3.2 Подключите (если необходимо) резервный источник питания к контактам «+U2» и «GND».

4.3.3 Соблюдайте полярность подключения к источнику питания.

Рекомендуется использовать резервированные источники питания серий «РИП-12» или «РИП-24» производства компании «Болид»

4.4 Подключение считывателя

4.4.1 К контроллеру можно подключить 1 считыватель ключей Touch Memory (iButton), карт Proximity с выходным интерфейсом Touch Memory, Wiegand или ABA-TrackII («C2000-Proxy», «C2000-Proxy H», «Proxy-2A» исп.01, «Proxy-2M», «Proxy-2MA», «Proxy-3A», «Proxy-3M», «Proxy-3MA») или клавиатуру для считывания PIN-кодов.

4.4.2 Набор контактов для подключения считывателя показан в таблице 1. Если на считывателе установлен один одноцветный светодиод, то, независимо от его цвета свечения, он подключается к контакту «LEDG» контроллера.

4.4.3 Если напряжение питания считывателя находится в диапазоне от 10,2 до 28,4 В, а расстояние между контроллером и считывателем не более 50 м, напряжение питания на считыватель можно подавать непосредственно с клемм контроллера, к которым подключён источник питания: «+U1» или «+U2».

4.4.4 Подключение считывателей с интерфейсом Touch Memory показано на рис. 5 и 6.

4.4.5 Подключение считывателей с интерфейсом Wiegand показано на рис. 7.

4.4.6 Подключение считывателей с интерфейсом ABA Track-II аналогично подключению считывателей с интерфейсом Wiegand с учетом того, что ко входу «D0» контроллера подключается выход считывателя «DATA», а ко входу «D1» - выход «CLOCK».

4.4.7 Закройте крышку контроллера до характерного щелчка и зафиксируйте ее винтами крепления (при необходимости).

Таблица 1. Назначение контактов колодки для подключения считывателя

Контакт		Назначение			
D0	В режиме ТМ	Вход/выход цепи данных считывателя			
	B режиме Wiegand	Вход для подключения цепи данных «D0» считывателя			
	В режиме ABA Track-II	Вход для подключения цепи данных «DATA» считывателя			
GND		Выход для подачи напряжения питания считывателя («минусовой» провод)			
D1	В режиме ТМ	Не используется			
	B режиме Wiegand	Вход для подключения цепи данных «D1» считывателя			
	В режиме ABA Track-II	Вход для подключения цепи тактового сигнала «CLOCK» считывателя			
LEDR		Выход управления красным светодиодом считывателя			
LEDG		Выход управления зелёным светодиодом считывателя			
BEEP		Выход управления звуковым сигнализатором считывателя			

Рисунок 5. Схема подключения контактного устройства Touch Memory

Вариант 1

Для считывателей с током потребления не более 100 мА, удалённых от контроллера не более чем на 50 м.

С2000-КДЛ-2И		Считыватель	
	BEEP	BEEP	
	LEDR	LEDR	
	LEDG	LEDG	
	D0	TM	
	+U	+12B	
	GND	GND	

Вариант 2

Для считывателей с большим током потребления или удалённых от контроллера более чем на 50 м.

Рисунок 6. Схема подключения считывателей с интерфейсом Touch Memory

Вариант 1

Для считывателей с током потребления не более 100 мА, удалённых от контроллера не более чем на 50 м.

С2000-КДЛ-2И		Считыватель	
	BEEP	BEEP	
	LEDR	LEDR	
	LEDG	LEDG	
	D1	D1	
	D0	 D0	
	+U	+12B	
	GND	 GND	

Вариант 2

Для считывателей с большим током потребления или удалённых от контроллера более чем на 50 м.

Рисунок 7. Схема подключения считывателей с интерфейсом Wiegand или ABA Track-II

ПРОВЕРКА КОНТРОЛЛЕРА

4.5 Проверку контроллера проводит эксплуатационно-технический персонал, имеющий квалификационную группу по электробезопасности не ниже второй.

4.6 Проверка проводится при нормальных климатических условиях по ГОСТ 15150-69:

относительная влажность воздуха – (45 – 80) %;

- температура окружающего воздуха (25 ± 10) °C;
- атмосферное давление (630 800) мм рт. ст., (84 106,7) кПа.

4.7 Подключение и отключение внешних цепей при проверках производится при отключённом питании контроллера.

4.8 Проверка основных параметров

4.8.1 Для проверки контроллера используйте пульт «C2000М».

4.8.2 Подключите к пульту цепи интерфейса RS-485 и цепи питания.

4.8.3 Подайте питание на пульт и контроллер.

4.8.4 Индикатор «Работа» контроллера должен перейти в режим непрерывного свечения зелёным цветом не более чем через 15 с.

Рисунок 8

4.8.5 В течение 1 мин после включения питания пульт должен показать сообщение об обнаружении устройства с сетевым адресом, соответствующим текущему адресу контроллера (заводской адрес контроллера – 127). На рис. 8 представлен индикатор пульта «С2000М» с соответствующим сообщением.

4.8.6 Если придёт несколько сообщений, накопившихся в буфере контроллера, их можно «пролистать» с помощью кнопок « ◄» и « ►» на пульте «C2000M».

4.9 Проверка в режиме «Диагностика»

4.9.1 Включить режим «Диагностика», выполнив три кратковременных и одно продолжительное нажатие на датчик вскрытия корпуса (тампер). Кратковременное нажатие – удержание кнопки в состоянии «нажато» в течение от 0,1 до 0,5 с. Продолжительное нажатие – удержание кнопки в состоянии «нажато» в течение не менее 1,5 с. Пауза между нажатиями составляет (0,2 – 1) с.

4.9.2 В случае исправности контроллера поочерёдно включаются индикаторы «Работа», «RS-485», «Линия» в режиме «Одиночные короткие вспышки с большой паузой сначала зелёным цветом, затем жёлтым.

5 ПОДГОТОВКА К РАБОТЕ

Для работы контроллера в составе ИСО «Орион» под управлением пульта «C2000М» или компьютера с АРМ «Орион Про» требуется присвоить ему уникальный сетевой адрес и сделать необходимые настройки (см. Руководство по эксплуатации).

